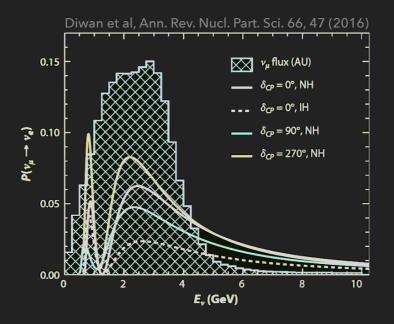
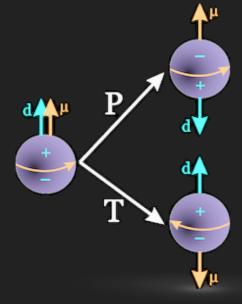


NUCLEI AT THE INTENSITY FRONTIER

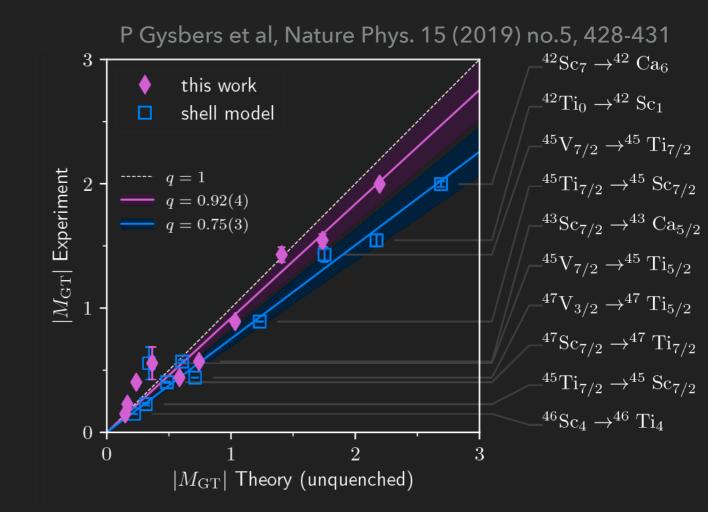

- Seek new physics through quantum effects
- Precise experiments
 - Sensitivity to probe the rarest interactions of the SM
 - ▶ Look for effects where there is no SM contribution
- Major component is nuclear targets
- ▶ Important focus of HEP/NP experimental program
 - Neutrino physics
 - Dark matter direct detection
 - Charged lepton flavour violation, EDMs, ββ-decay,




NUCLEAR MATRIX ELEMENTS FOR BSM SEARCHES FROM LATTICE QCD - DETMOLD

NUCLEI IN NEW PHYSICS

- Deep Underground Neutrino Experiment
 - Need to know interactions with argon over a wide range of energies
- Scalar currents
 - Dark matter direct detection
 - Lepton flavour violation: μ2e
 - Precision isotope spectroscopy
- Tensor currents
 - Electric dipole moments of neutrons and nuclei
 - Velocity dependent dark matter interactions
- Neutrinoless double beta decay



NUCLEAR UNCERTAINTIES

- How well do we know nuclear matrix elements?
- Gamow-Teller transitions in nuclei
 - Well measured for large range of nuclei (30<A<60)
 - Matrix elements systematically off by 20-30%
 - Correct using 2 body currents where they are known
- Goal: Fundamental understanding and constraint from the Standard Model

PRECISION NUCLEAR PHYSICS

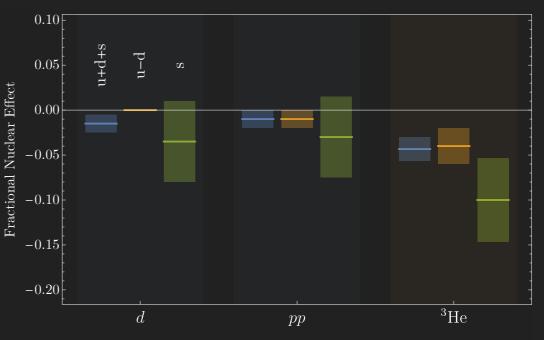
 Very challenging to explore all of NP from the SM (QCD)

Exploit effective degrees of freedom

Establish quantitative control through linkages between different methods

 Lattice QCD forms a foundation determines few body interactions & matrix elements

 Match EFT and many body techniques onto LQCD


DEVELOPING THE TOOLS FOR LQCD NUCLEI

Present

- Case study QCD with unphysical quark masses (m_{π} ~800 MeV, 450 MeV)
 - 1. Spectrum and scattering of light nuclei (A<5) [PRD 87 (2013), 034506]
- 2. Nuclear structure: magnetic moments, polarisabilities, parton structure (A<5) [PRL 113, 252001 (2014), PRL 116, 112301 (2016), PRD 96 094512 (2017), 2009.05522]
- 3. Nuclear reactions: np→dγ [PRL 115, 132001 (2015)]
- 4. Gamow-Teller transitions: pp→dev, g_A(³H)
 [PRL 119 062002 (2017)]
- 5. Double β decay: nn \rightarrow ppee, $\pi^- \rightarrow \pi^+$ ee [PRL **119**, 062003 (2017),2004.07404]
- 6. Scalar/tensor currents (A<4) [PRL 2018]

Scalar matrix elements

DEVELOPING THE TOOLS FOR LQCD NUCLEI

Present

- Case study QCD with unphysical quark masses (m_{π} ~800 MeV, 450 MeV)
 - 1. Spectrum and scattering of light nuclei (A<5) [PRD 87 (2013), 034506]
- 2. Nuclear structure: magnetic moments, polarisabilities, parton structure (A<5) [PRL 113, 252001 (2014), PRL 116, 112301 (2016), PRD 96 094512 (2017), 2009.05522]
- 3. Nuclear reactions: np→dγ [PRL 115, 132001 (2015)]
- 4. Gamow-Teller transitions: pp→dev, g_A(³H)
 [PRL 119 062002 (2017)]
- 5. Double β decay: nn \rightarrow ppee, $\pi^- \rightarrow \pi^+$ ee [PRL **119**, 062003 (2017),2004.07404]
- 6. Scalar/tensor currents (A<4) [PRL 2018]

Future

- Refine LQCD calculations with physical quark masses and better control LQCD systematics
- Matching to nuclear EFTs and constraints on models
- Connection to experiment

Goal of whitepaper: overview progress and expectations

Needs: continued investment in exascale+ computing and software